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The synthesis of both natural and unnatural peptides that are
designed to possess well-ordered structures in solution has been
the focus of much effort for a number of years.1 This interest is
in part due to the intellectual challenge of understanding and con-
trolling the many factors which contribute to the protein folding
process, as well as the potential applications to the design of arti-
ficial proteins and bioactive agents. Within the context of seeking
peptides which form ordered structures in solution, this paper
describes conformational studies of RCO-(D-Xxx-Pro)n-NHMe
peptides that are designed to populate the as of yet unreported
poly(âII ′-turn) secondary structure in CD2Cl2. Central to the
design strategy is the stability of the 10-membered cyclic hydrogen
bond between residuei and i + 3 defining aâII ′ turn in R-CO-
D-Xxx-Pro-NHR′ (1) species.2 In these structures, the minimiza-
tion of pseudo A(1,3)-strain between theD-residue HR and the
proline δ-carbon restricts rotation ofψ(i + 1) to ∼-130°, as
required for the formation of the critical hydrogen bond.3

Examination of structure1 suggested that poly(D-Xxx-Pro)
peptides (2) could thus potentially populate a conformation
characterized by a repeatingâII ′ turn unit.

Initial investigations began with CH3CO-D-Ala-Pro-NHMe (3)
since this motif has been shown by IR spectroscopy to prefer-
entially populate aâII ′-turn in chlorinated hydrocarbons.2a Specif-
ically, the identification of critical conformational parameters by
NMR spectroscopy including NOEs in this minimal turn unit
would serve as a basis for the study of multiple-turn peptides.
Accordingly, the NOESY spectrum of3 exhibits NOEs consistent
with the population of aâII ′ turn.4 It should first be noted that

the NOEs between HR(D-Ala2) and Hδ2(Pro3)/Hδ3(Pro3) are the
strongest interresidue NOEs, consistent with an amidetrans
conformation. These strong NOEs also indicate that analogue3
preferentially populates a conformation in which HR(D-Ala2) and
Hδ2(Pro3)/Hδ3(Pro3) are in close spatial proximity as expected
for ψ ∼-130°, consistent with the minimization of pseudo A(1,3)-
strain. The NOEs specifically critical to the assignment of a turn
structure are a medium NOE between NH(Me) and Hδ2(Pro3)
and a weak NOE between NH(Me) and HR(D-Ala2) (Figure 1).5

NH chemical shift perturbation trends observed from DMSO-d6

titration of 3 are also consistent with the presence of thei + 3 f
i hydrogen bond (Table 1). Accordingly, the NH(Me) chemical
shift exhibits less dependence on added DMSO-d6 than that of
NH(D-Ala2). To rule out the possibility that this solvent depen-
dence and these NOEs are due to the formation of the cyclic
seven-membered hydrogen bond characteristic of aγ-turn, the
analogue7 was also investigated. Compound7 represents a
suitable reference molecule since pseudo A(1,3)-strain should
constrain the geometry between the isobutyryl HR and the
pyrrolidine δ-hydrogens as HR(D-Ala2) is to the prolineδ-hy-
drogens in3. Furthermore, analogue7 has been reported by
Gellman to be 75% H-bonded in aγ-turn geometry (25% non-
H-bonded).6 Interestingly, the NOESY spectrum of7 shows
neither the presence of the NH(Me)-HR-isobutyryl NOE nor the
NH(Me)-Hδ2(Pro) NOE.7 These data thus support that the NOEs
in 3 do not arise from aγ-turn or a non-H-bonded conformation
but do arise from the population of aâII ′ turn and may be used
in the characterization of multiple-turn peptides.

Conformational studies were then extended to the peptides4-6,
8, and9. Assignments of individual spin systems were accom-
plished from TOCSY or COSY spectra. Sequential assignments
were obtained through analysis of NOESY (for4, 5, 8, and9)
and ROESY (for4) spectra. Concentration dependence studies
showed a stable chemical shift for the amide protons below 5
mM concentrations. The simplest extension of theâII ′ motif is
represented in the two-turn unit4, Ac-(D-Ala-Pro)2-NHMe. The
compilation of NOE data, HR chemical shift data, and NH chem-
ical shift solvent dependence for4 provides compelling evidence
for the population of the two-turn geometry when compared with
the analogous data for3. The DMSO-d6 titration data shows that
NH(Me) and NH(D-Ala4) are significantly more solvent-shielded
than NH(D-Ala2) as expected if NH(Me) and NH(D-Ala4) were
involved in hydrogen bonds. That these hydrogen bonds aid in
populating the respective turns is further supported by the presence
of the NH(Me)-Hδ2(Pro5) and NH(Me)-HR(D-Ala4) NOEs for
the C-terminal turn and the NH(D-Ala4)-Hδ2(Pro3) and NH(D-
Ala4)-HR(D-Ala2) NOEs for the N-terminal turn (Figure 1). The
two-turn structure4 thus exhibits NOEs analogous to those found
in one-turn structure3, which arise from aâII ′ conformation.
Further evidence that4 populates the two-turn motif comes from
comparison of HR chemical shifts which are nearly identical for
HR(D-Ala2) in 3 and HR(D-Ala2) in 4 (4.51 and 4.49 ppm,
respectively) and also nearly identical for HR(Pro3) in3 and HR-
(Pro5) in4 (4.43 and 4.45 ppm, respectively).

With the establishment that peptides3 and4 populate the one-
turn and two-turn motifs respectively, some general statements
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can be made regarding trends of the peptides included in this
study. For the peptides3-6, DMSO-d6 titration shows that all
NH groups are solvent-shielded except that on the N-terminal
alanine, NH(D-Ala2). For the oligomers8 and9, possessing the
N-terminalD-proline, all NH groups exhibit solvent-shielding on
titration with DMSO-d6. In the longer peptides5, 6, and9 the
NH(i + 3)-HR(i + 1) weak NOE is difficult to detect for some
turns due to the degree of overlap in the HR region of the spectrum.
The diagnostic NH(i + 3)-Hδ2(i + 2) NOE of medium intensity
is uniformly present in every potential turn unit. This NOE is,
however, somewhat weaker in the N-terminal turns of peptides5
and 6. Interestingly, the chemical shift of NH(D-Ala4) in
compounds5 and6 shows an increased susceptibility to solvent
(Table 1) and HR(D-Ala2) in 5 (three turn units) and6 (four turn
units) exhibit a downfield shift when compared with3 (one turn
unit) and4 (two turn units). These data suggest that in peptides
5 and 6 the N-terminal turn might exhibit a different dynamic
behavior.8 The N-terminal turn of8 (three turn units) does not
exhibit this profile (this should not be surprising, considering the
additional conformational constraints imparted by theD-Pro
residue). Curiously, the C-terminus (NH(Me)) exhibits a decrease
in solvent accessibility as the chain length increases in the series
3-6. Evidence for the poly(âII ′-turn)-forming potential of these
peptides can also be obtained from IR spectroscopy. Peptides8
and 9 were selected for this study because their respective IR
spectra should exhibit only a H-bonded NH stretch band in the
poly(âII ′-turn) conformation. Indeed, IR spectroscopy of two-
turn structure8 (1 mM, CH2Cl2) reveals that the NH-stretch region
exhibits one significant band at 3341 cm-1 (H-bonded), while

the three-turn structure9 exhibits one significant band at 3336
cm-1 (Figure 2). The presence of these strong bands attributed
to a H-bonded state and the presence of non-H-bonded NH-stretch
bands which are almost negligible (∼3450 cm-1) indicates that
peptides 8 and 9 are essentially locked in their H-bonded
geometries.2a These IR data are complementary to the NOE and
DMSO-d6 titration data in that they provide evidence that the
turns are populated simultaneously, giving rise to the repeating
âII ′-turn secondary structure.

Work is ongoing to evaluate the effects of amino acids other
thanD-alanine on this secondary structure and to evaluate these
peptides in competitive solvents.
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Figure 1. Selected NOEs.

Table 1. Change in NH Chemical Shift on Addition of DMSO-d6

(100 µL) to 1.5 mM Peptide Solutions in 1 mL CD2Cl2 (∆δsolvent)

compd NH ∆δsolvent(ppm)

3 D-Ala2 1.26
Ac-D-Ala-Pro-NHMe NHMe 0.18
4 D-Ala2 1.11
Ac-(D-Ala-Pro)2-NHMe D-Ala4 0.15

NHMe 0.13
5 D-Ala2 0.92
Ac-(D-Ala-Pro)3-NHMe D-Ala4 0.34

D-Ala6 -0.115
NHMe 0.023

6 D-Ala2 1.02
Ac-(D-Ala-Pro)4-NHMe D-Ala4 0.30

D-Ala6 0.11
D-Ala8 0.01
NHMe 0.00

8 D-Ala2 -0.04
Piv-D-Pro-Pro-D-Ala-Pro-NHMe NHMe -0.04
9 D-Ala2 -0.04
Piv-D-Pro-Pro-(D-Ala-Pro)2-NHMe D-ALA4 -0.03

NHMe -0.03

Figure 2. NH stretch FT-IR data for 1 mM peptides in CH2Cl2. 8,
Maximum at 3341 cm-1; 9, maximum at 3336 cm-1.
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